If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=1320
We move all terms to the left:
n^2+n-(1320)=0
a = 1; b = 1; c = -1320;
Δ = b2-4ac
Δ = 12-4·1·(-1320)
Δ = 5281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5281}}{2*1}=\frac{-1-\sqrt{5281}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5281}}{2*1}=\frac{-1+\sqrt{5281}}{2} $
| -9x+14=-7x-3 | | 6^x-26=0 | | 7x=1x+3 | | -7x=-3x+12,4 | | 5(x-1)=5(4x-13 | | -11+2x=29+-2x | | 3y−5y+10=36* | | 3n+7=5n-17 | | 21−6x=27−8x | | 8/10-2g=1/10 | | 4/5-2x=1/10 | | Y=0.9^x | | w2-2w-3=0 | | 3^2x+5=10 | | 9y−11=−10+12y | | c/5.3+7.3=10.3 | | 5p+p-5p=16 | | 11s-5s-2s+2s-4s=14 | | 899=14f-95 | | 17z-11z-5z=14 | | (4x+7)+2=3x+8 | | z/5+-15=-9 | | 8k-4-2k=3k-4 | | 8k-4-2k=9k-4 | | 8k-4-2k=1k-4 | | 8k-4-2k=7k-4 | | 17z−11z-5z=14 | | 8k-4-2k=8k-4 | | 6u+6=-42 | | 8k-4-2k=6k-1 | | 8k-4-2k=6k-2 | | 8k-4-2k=6k-9 |